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By Joseph G. Douvillier, Jr., and Robert E. Coate

SUMMARY

A method for developing coordinate-transfor_tion equations for a

multiple-degree-of-freedom flight simulator is pr._sented. The equations

as developed are applicable in particular to the NASA five-degree-of-

freedom piloted flight simulator; in general, how._ver, the method of their

development is applicable to transformation equations for other, similar

simulators of fewer or of more degrees of freedom.

Because the NASA simulator has a very limited range of displacement

in one of its modes of motion the equations are written for four degrees

of freedom instead of for five. Examination of the singularities of the

equations showed it possible to reproduce any co_oination of four of the

six components of motion, three angular and three linear, of the vehicle

being simulated. It was found that, in most cases, there is more than

one way to simulate each combination, the most desirable way determined

by the restrictions imposed by the singularities of the equations.

INTRODUCTION

Piloted flight simulators are used to investigate problems associated

with the control of humanly piloted aircraft and spacecraft, both existing

and proposed. These simulators impose upon the pilot a partial reproduc-

tion of stimuli pertinent to his control of the vehicle. In the main,

these are stimuli of the visual and of the kinesthetic senses. Existing

simulators range from the relatively simple, which simulate only the

visual stimulus from the panel instruments, to the highly complex, which
simulate both the kinesthetic stimulus from the motion of the vehicle

and the visual stimulus from the scene outside the cockpit.

The Ames Research Center has recently constructed a five-degree-of-

freedom motion simulator, a piloted centrifuge, capable of reproducing

components of both angular and linear motion. A study was made to examine

how faithfully linear acceleration and angular velocity can be reproduced

on the Ames simulator, and to determine how to program a desired

simulation. This report was drawn from that study.
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The present report describes the method used to develop and analyze
the kinematics equations of the simulator. Although the details of the
geometry and of the partitioning of the equations apply explicitly to the
Amessimulator, the method is general and can be used to study the
kinematic simulations allowed on any piloted centrifuge with several
degrees of freedom.

The analysis begins with a description of the physical configuration
of the Amessimulator. The desired relationships between simulator
kinematics and linear acceleration and angular velocity are next deter-
mined. The resulting expressions are rearranged so that the limitations
imposed on the simulation by the mathematical constraints of the trams-
formation equations can be explored. A procedure is then described for
determining initial conditions to be used in programminga simulation
on an analog computer. Finally, the relationships between the axes of
the simulator cockpit and the axes of the simulated vehicle are examined.
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NOTATION

A total vector linear acceleration of the center of rotation of

the simulator cockpit

av magnitude of the component of _ in the direction _C

--G
aiG magnitude of the component of A in the direction m ,

i = I, 2_ 3

C axes

G axe s

J axe s

L axe s

M axes

set of three right-hand orthogomal axes fixed in the centrifuge

armi origin at the center of rotation of the cockpit;

orientation defined by T C, _C _C

set of three right-hand orthogonal axes fixed in the simulator

cockpit; origin at the center of rotation of the cockpit;

orientation defined by i-G, 2-G, _G

set of three right-hand orthogonal axes fixed in the inner

gimbal; origin at the center of rotation of the simulator

cockpitl orientation defined by TJ, _J, _J

set of three right-hand orthogonal axes fixed in the earth;

origin at the intersection of the centrifuge arm with the

axis of rotation of the centrifuge arm; orientation defined
by yL yL

set of three right-hand orthogonal axes fixed in the outer

gimbalj origin at the center of rotation of the cockpiti
orientation defined by T M _M, _M



A
4
9
7

_C

_C

_C

_G

_J

_L

TM

_H

7_

vector of unit magnitude_ forming a right-hand orthogonal

triad with _C and _C

vector of unit magnitude, orthogonal Io _C and _C_ along the

centrifuge arm_ positive from the C axis; origin toward the
axis of rotation of the arm

N_

vector of unit raagnitude, parallel to 3-_ along the outer

gimbal drive axis; positive downward

identical to _J

vector of unit magnitude fixed in the cockpit_ forming a

right-hand orthogonal triad with _G and _G

vector of unit magnitude_ fixed in the cock it forming a

right-hand orthogonal triad with _G and _% '

vector of unit magnitude along the cockpit drive axis_ forming

a right-hand orthogonal triad with _0 and _J

identical to _I_i

vector of unit magnitude forming a right-hand orthogonal triad
with _J and _J

vector of unit magnitude along the a>is of rotation of the

centrifuge arm; positive downward

vector of umit magnitude forming a r_ght-hand orthogonal triad

with _H and _M

vector of unit magnitude along the inner gimbal drive axis,

forming a right-hand orthogonal triad with _M and _M

identical to _C

angular displacement between 2J and _O and between _J and _G,

in the plane perpendicular to _J and _ositive according to
the right-hand rule with respect to _0; zero when 2J = _G,

]a = 3o

angular displacement between TM and _.£Jand between _M and 3J

in the plane perpendicular to _M a_id positive according to
the right-hand rule with respect to 2_':_zero when _M = _J,
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_3

7i

_iG

angular displacement between T C and T M and between _C and

_M in the plane perpendicular to _C and positive according

co the right-hand rule with respect to _C] zero when T C = iM,

time rate of change of 7i, i = !, 2_ 3

angular velocity of the centrifuge arm about _L positive

according to the right-hand rule with respect to _L

length of centrifuge arm_ perpendicular distance between

and

total vector angular velocity about the center of rotation

of the simulator cockpit

magnitude of the component of [ about TG, positive according

to the right-hand rule with respect to TG, i = i, 2, 3
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THE SIMULATOR

Figure i is a photograph of the Ames five-degree-of-freedom piloted

flight simulator. The cockpit is set in gimbals so that it can rotate

independently about three axes] the cockpit and gimbal assembly is mounted

on the end of the centrifuge arm, which can rotate in a horizontal plane

and thereby impose centrifugal acceleration upon the cockpit. In addition,

the cockpit (and gimbal assembly) can accelerate vertically with reference

to the arm. However, because of the very limited range of vertical

displacement_ vertical acceleration of significant magnitude can be

imposed only in pulses of very short duration. The simulator can, of

course, additionally provide the visual stimulus from the cockpit panel

instruments_ but here we will be concerned with only the kinesthetic

stimulus. The transformation equations relate the coordinates of the

angular and the linear accelerations along and about cockpit axes to

the coordinates along and about the axes of freedom of the simulator.

Because control over the vertical acceleration is quite restricted, it

is anticipated that techniques for using this vertical degree of freedom;

to null spurious transient accelerations, will be developed empirically

in practice] therefore, in the equations the simulator is treated as

having only four degrees of freedom instead of five. The vertical

acceleration is treated as an independent fixed input to the system.
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THE COORDINATE-TRANSFORMATION EQUATIONS

A
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The coordinate systems assigned to the several independent parts

of the simulator are indicated in figure 2, a schematic diagram of the

simulator. The notation and the coordinate-transformation procedures of

reference i will be followed.

The degrees of freedom of the simulator are as follows: The centri-

fuge arm can rotate about _L with angular velocity of magnitude _. The

outer gimbal can rotate about _C with angular velocity of magnitude 7s,

the inner gimbal about -_ with magnitude 72, and the cockpit about i J

with magnitude 71. Limited, linear travel of the gimbal assembly (outer

gimbal, inner gimbal, ant! cockpit) is possible along the unit vector _C.

However, as mentioned before, in the development of the equations this

mode of motion is not treated as a degree of free<_om. The acceleration

along _C is of magnitude av.

In the discussions which follow, the axes _L _C, _H, TJ will comprise

the drive-axes system of the simulator.

The total vector angular velocity of the cockpit, expressed in

coordinates along drive axes_ is

and the total vector linear acceleration is

: + +

The vectors _ and K can also be expressed _s sums of components

along the three cockpi_t axes, the G axes. Let WiG be the coordinate

of the component of _ about the _G axis, and aiG be the coordinate

of the component of A along T G, i = i, 2, 3. Then

=amN + a + a a] a

The transformation equations which have to be developed must relate

the coordinates along simulator-drive axes to th(_ coordinates along

cockpit axes. However_ because there are only four degrees of freedom

in the system, there can be a total of_ at most_ four mutually independent

coordinates which describe both A and _; that _i_ among the six G axes

coordinates_ _zG, _2G_ _sG, azG, a2G_ asG, of A and _ four, at most, are

mutually independent; which four being a matter of choice. The remaining

two coordinates are automatically determined once the four independent
coordinates have been chosen.



Generally the simulation program will be set up as follows. The
simulator cockpit axes (G axes) will be set to correspond in a particular
way with the axes of the vehicle to be simulated (according to a plan
which will be developed along with the equations). The four G axes
coordinates of _ and _ to be mutually independent will be chosen to
correspond to the four coordinates of the angular velocity and the linear
acceleration_ of the actual vehicle_ which are most pertinent to the
problem being studied and, hence_ are to be faithfully reproduced. Then
the transformation equations will be solved for the simulator-drive
coordinates _l_ 72, 73, and p_ as functions of the four independent
G axes coordinates and, in addition, for the two G axes coordinates
of A and _ which were not chosen to be independent. These latter two
define the spurious stimulus to which the simulator pilot is subjected,
that isj that part of the total simulated stimulus which is not a
representation of any stimulus of the actual flight.

In the discussions that follow, the four G axes coordinates which
are to be mutually independent will be called simply the independent
variables, and the four simulator-drive-axes coordinates together with
the two dependent G axes coordinates will be called the dependent
variab!es. The dependent variables will always include Yl, Ya, Ys, and
p_ (or, as it will later turn out, p_).
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EQUATIONS FOR REPRODUCING THE TOTAL ANGULa/_ VELOCITY AND

ONE COMPONENT OF LINEAR ACCELERATION

Development of the Equations

We may derive, by the method of reference i, pages 6 and 7, the

genera! form of the transformation matrix that relates the coordinates
of _ in drive axes to the coordinates in G axes:

W2G =

_sG

-iJ.ia iG ia iY

Similarly, for the coordinates of linear acceleration:

-. ]

|

73.

(l)
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lizGl I C" TG2o/ : ic _
_j c 7o

m

-_c. ia 3c.-£a

_c. -_a 3c. _a

-_c. fa _c.-fa

(2)

It will simplify somewhat the matrices of equ,_tions (i) and (2) if

we write as unity or as zero those dot products which are unity or zero.

The dot product of two unit vectors is the cosine of the angle between

them. Therefore, YJ. yG = i and _J. _G = yJ. _G = 2-M.yG = 0 (refer to

fig. 2). Then equation (i) becomes

I 1
_30_1 _M.]o 3c.]a 3T,.]u] _

k

We can rewrite equation (2)

E I Iic. io -z o o __c. io _3c.

i c -Z° o -z = _-_c _o _3c Zo

c 7a o o - _c 3o _7c

pk

a ].G

a2G

aaG

I(f)l
av j

(3)

(2a)

We can rewrite (3)

I o 3c. is -i o 1J_vI . _G '_'C. 2G 0 -1

_. _ _.c. 7s o o -

7:_ -_]L.id-

• ZO72 = _3L •

_3 L
I

(3a)

w2d

W_t

We can then combine equations (2a) and (3a) into one set of six equations:
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l o -jc. ya o o o o -1 o o

o _.-_a Tc._c- o o o o o -i o

o _.-ja ] c . -Sa o o o o o o -2

o o o yc. yc- -2 o o o o o

o o o yc. -_c- o -1 o o o o

o o o i c. Ta o o -2 o o o

0

0

0

__c. ya

_-_c. -Za

_-_c.Ta

_Ts. TG

_TT,. _a

_it,. ]a

0

0

0

m

0

0

0

__c. Tc-

-Tc. 2c-

7z

72

7s

.°

o),

azG

a2G

asG

COzG

CO2G

COsG

(_)
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Examination of Constraints

This set of six equations has a solution if and only if the deter-

mimant of the 6X6 matrix of coefficients of the six dependent variables

is not zero. For example, suppose we choose as the independent variables

the three coordinates of angular velocity_ _zG_ _2G, and _3G_ and one

coordinate of limear acceleration_ aiG. Then the dependent variables will

be 71, 7£, 78, P_, ajG, and akG (i, j, k = i, 2, 3 but i _ j _ k J i).

The matrix of coefficients of the dependent variables is



m

l o ic. io o o o

o _M. 2o ]c. _G 0 0 0

0 #. 70 7C. _0 0 0 0

o o o Sc io• -61.j -61 k

o o o ic. _o - 52 j - %_

o o o lc. 70 -s_,j -s8 k

(_)

where

_ml=[it O if m : nothe rwi se

The determinant of (5) is

lI . >I o -
-iC. _G(_ij_Sk- SsjSik ) + l C. 7G(sij_2k- $2jSik) ]

So for the equations to have a solution (i.e._ for the simulation to be

realizable), the following conditions must prevail:

(_._G)(TC.-ffG) _ (_.TG)(_C. ZG) _ 0

and

_C .iG(62jSa k _ 8sj$2k ) TC. 2G(_ij$Sk - $sj$1k)

+ Tc-_G(_lj62k- $2j_ik) / 0

To interpret the first condition it is necessary to convert the dot

products to trigonometric functions. The transformation matrices of

equations (i) and (2) represent successive rotations of coordinates

through the angles _ 7a, 72, and 71, in that order. Then (according

to ref. i, pp. 6-10),
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ILccLIEcossinI_L. _C _L. _C yL _C = sin h cos h

T 3c _L. 3c yr 3 o o

yc _N _c .2-}4 3c _N = si zs cos za

c _ _c. _ 7c o A

9
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and

TJ _G 2J._G _J _G = cos Yl sin Yl

J _G _J. _G _J -sin Yl cos 7

Purthermore, any number of successive rotations can be combined. For

example,

I-C" _G _C" iG 3C'1!1 _ 0 0 t Ii%72 0-sin 711 Ic°i 7s sin Y3 1

TC _G 3C. 3G _C 3G : cos 71 sin 71 i 0 si 73 cos 73

c _o _c._ _c -_i_7_ _o_ 7 Li_7_ o oo_ 0

The matrix of equation (2) now can be written

g--

c_cs 72 cos 73

iisin _l sin _2 cos _3 - cos 71 sin 73
s 71 sin Y2 cos 73 + sin _i sin 73

cos 72 sin 73

sin 71 sin 72 sin 73 + cos 71 cos 73

cos 71 sin 72 sin 73 - sin 71 cos 73

-sin 72 i

sin 71 cos 7e

cos 71 cos 7
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and that of equation (3)

I 0 -sin Ya

cos Yl sin Yl cos Ya

-sin Yl cos Yl cos Ya

-sin Ya

sin Yl cos Ya

cos Yl cos y

Then (5), which is composed of elements of the matrices of equations (2)

and (3), becomes

i 0 -sin 7a 0 0 0

0 cos 7_ sin 71 cos 7a 0 0 0

0 -sin 71 cos Yl cos 7a 0 0 0

0 0 0 cos 72 cos Ys -Slj -81 k

0 0 0 sin 71 sin Ya cos 7s - cos 71 sin Ys -82j -82 k

0 0 0 cos Yl sin y_ cos Ys + sin Yl sin Ys -Ssj -83 k

Now the first condition necessary for the determinant of (5) to be

other than zero becomes

(cos Y!)(cos 71 cos Ya) - (-sin yl)(sin Yl cos 7a) : cos 72 _ 0

Therefore

This condition says that the cockpit drive axis, _J, must not be alined

with the outer gimbal drive axis _C.

The second condition is readily interpretable in dot-product form.

It depends on which linear acceleration component, in addition to _iG_

W2G, and_sG, is independent. If amG is independent [C. [G # O] that is,

the T G axis cannot lie in the plane perpendicular to the i C axis. If a2G

is independent 3 _G cannot be perpendicular to i C. If asG is independent,

_G cannot be perpendicular to T C. In general, if _C. _G = 0, then the

independence of aiG no longer exists and, like ajG and akG , it is

dependent upon the coordinates of _ that is, all components of A are
dependent on _.

Equation (4) can be written in a more general form applicable to the

case miG, _2G, _sG, and aiG independent.
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0

cos 71

-si_l 71

0

0

0

o o

0 1 0

0 0 l

0 0 0

0 0 0

0 0 0

-sin Ya 0 0

sin 7z cos 72 0 0

co8 _i cos 12 0 0

0 cos 7e cos Is -51j

0 sin 71 sin Ia cos 73 - cos 71 sin 73 -52j

0 cos 7z sin ya cos Is + sin Iz sin 73 -Ssj

0 0 sin F2

0 0 -sin 11 cos 72

0 0 -cos _I cos _2

5zi -cos 7e sin 7s 0

52i -sin 71 sin 72 sin Ya " cos 71 cos 7s 0

5si -cos 7i sin 72 sin 7a + sin _i cos Ya 0

where i, j, k : l, 2, 3 but i _ j _ k _ i;

otherwise

y_.Zc _ 0

0 -- _i"

0 I_a

0 7s

°.

-5Zk PA

-52 k ajG

o F_7

0 I _2G I

sin Ia I aio]

(6)

A
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EQUATIONS FOR REPRODUCING PART OF THE ANGD-LAR VELOCITY
AND ALL OR PART OF THE LINEAR ACCELERATION

Development of the Equations

Unfortunately_ only for the case in which the independent variables

are made up of all three of the coordinates of angular velocity and one

of the coordinates of linear acceleration do equations (6) have a solution.

Otherwise the determinant of the matrix of coefficients of the dependent

variables is zero. We can get around this by using the rate of change of
linear acceleration instead of the acceleration itself. In C axes

coordinates

-- .o,

i = pxic + 2pkX_c+ a_c + (i_c) x (_Zc + _c + a_C)

= (pX'_ pis)Sc + (s_i£)2c + _Gc



13

In G axes coordinates

X (algO + a2_G + aaG3 G)

= (_.G + a3a<2a - _2u_so)i a + (LaG + ald"_sG - a3oW__a)-_a

+ (a3G + a2GUlG - aiGO°2o)3G

where X indicates the vector product.

The equations for transforming from C axe:_ coordinates to cockpit-

axes coordinates have the matrix of equations (2):

_c. is

zc. -_c- -3c:-_a 3pD,"

-jc, -j

We can combine equations (3) and (7) as we did (2) and (3):

l o 3c, To o o o o -z c o

o -_4.2a ]c. Eo o o o o o -z o

0 -_4 ._G -C 7G 0 0 0 0 0 C -i_ °

0 0 0 1-13. :-C -i 0 0 0 -_e] a2G

0 0 0 _C . _]G 0 -i 0 asG £ -t_zO

0 0 0 TC :[G 0 0 -I a13 '3'• , -(_[2 G

i _2

:;3
,.,

ph

_xG

d2G

"-3G

"()

"].(7,

u2G

[__a%

0 0 __L ._G 0

o o .3L •_c, o

o o -T r'. 7c' o

Tc. Ta __c. 7F(: o -7c "7°

yc. _c, __c. _(; o -7 c • U-"

yc. ]c- __c. _:: o __c. _a

(8)
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Examination of Constraints

Again the equations have a solution only if the determinant of the

matrix of coefficients of the dependent variables is not zero. The
coefficient matrix will be of the form

l 0 _C. _G 0 t15 tl8

0 __M. _O 3C. _G 0 t2s t2B

0 _M.3G _C. _G 0 ts5 ts6

o 0 0 it. yG t4s t4_

0 0 0 _C . _G t ss t 56

0 0 0 _C. _G t6 s t66

(9)
A

4

9

?

where the tiJ are the coefficients of the two dependent G axes

coordinates. These two may be either one coordinate of angular velocity

and one coordinate of linear acceleration_ or two of the coordinates of

angular velocity.

The determinant of (9) is of the same form as the determinant of (5),

but with the 5mn replaced with the tij. The determinant of (9) is

I(_ ._)(_C. _G) _ (_. _G)(_C. _G)I [_C. _G(t55tG6 _ t6st56 )

__C. 5G(t45t66 _ t66t46 ) + yC . _G(t4sts 5 _ tsst46)]

The first condition necessary for the solution of equations (6) is

necessary also for the solution of equations (8); that is,

72I ±

The second condition states

yC. _G(tssts 6 _ tssts6) -_C ._G(t_st68 _ t66t46)

+ _C. _G(t_st55 _ t55t_6) _ 0

We must examine the implications of this last condition for each of 12

combinations of 4 (independent) variables chosen from among the 6 G axes

coordinates (we exclude the three combinations which contain all three

angular coordinates and which have been accounted for in equations (6)).

For example_ if aiG3 a2G3 a3G3 and WIG are independent# the second
condition for the determinant of (9) not to be zero is satisfied when
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Tc. Ta(a_a2) _ Tc. _a(_a_c_2a ) + yc. 7C(a_C_sO) ! 0

Equivalently,

and

azG / 0

_C ._G(azG ) + yC ._G(a2G ) + _C. _G(asG ) _ 0

If equations (2) are multiplied by the inverse of the matrix of (2)_ it

is apparent that the left side of the last inequality is exactly pk, one

of the dependent variables. So we can compile the following list of

combinations of independent variables and attend:¢nt restrictions.

Combination i.

Combination 2.

Combination 3.

Combination 4.

azG_ a2G_ asG_ _zG independent:

azG _ 0

aiG_ a2G_ asG_ _aG independent:

7aJ ± _/2

aaG / 0

oX/o

azG, aaG, asG, WsG independent:

7a# ± _/2

asG _ 0

azd3 aao_ _zG_ WaG independent:

azGa + aaG2 / 0

If azG = O_ then

_a. Tc t o
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If a2G = O, then

or, equivalently,

Combination 5.

Combination 6.

or_ equivalently_

Combination 7.

Combination 8.

_,_-_+__/2

aIGj a2G3 _iG3 WsG independent:

)'2 _ -+ I"t/2

asG / 0

_G. yC / 0

azG_ amG_ CO2G., _3G independent:

aaG / 0

ya. _c _ o

azG,_a3G_ C°zG_ _2G independent:

721± _/2

aaG _ 0

3a. ic _ o

aiG3 asG_ _iG, _3G independent:

7 2 : + :_/2

aza2 + aa_2 # 0

If azG = O, then

-flu. ic -_ o

A
4

9
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If asG = O, then

or_ equivalently,

Combination 9.

or equivalently,

Combination i0.

Combination ii.

Combination 12.

If a2G = 0 then

yo. yc _ o

alG, asG, _2G_ _sG independent:

a2 G / 0

ya. ic I o

aaG3 asG, _IG_ WaG independent:

72 _ + "_/2

azG / 0

_a. _c / o

a2G, asG, _zG, _G independent:

72 / + _/2

azG / 0

_. yc / o

aaG_ asG_ _2G_ w3G independent:

7a _ ± _/2

aaG a + a3c_2 _ 0

-_G. ic j o
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If asG = 0 then

 a.-fc o

As before, the restrictions _G. _C J 0, i = i, 2, 3 constrain the

axis to be outside the plane perpendicular to the _C axis.

_G

Equations (8) can be rewritten in a form more convenient for solution.

0 -sin 72 0 0 0 0 -i 0 0

0 cos Yl sin 71 cos 7a 0 0 0 0 0 -i 0

0 -sin Yl cos 71 cos F2 0 0 0 0 0 0 -i

0 0 0 cos _a cos Ys -i 0 0 0 -asG aeG

0 0 0 _sin 71 sin 7a cos 7s_ 0 -i 0 a3G 0 -alG

k-cos 71 sin 7s /

o o o _cos _l _In 72 cos _3_ o o -z -a2_ _ o
--\+sinYl sin 7s /

0 0

0 0

o 0

-cos 7a cos 7s -cos 7a sin 7s

f-s n cos\+cos 71 sin 7s / \-cos _i cos 7a

-cos 71 sin 72 cos _ ¢cos 71 sin 72 sin 7_k-sin Fl sin 73 sin 71 cos 73

THE INITIAL CONDITIONS

sin 7m 0

-sin Yl cos Fa 0

-cos 7_ cos 7a 0

0 sin 7a

0 -sin 71 cos F2

-cos 71 cos 72

71

7e

73

o,.

Pk

a_G

a2G

a sG

WaG

_sG

I
6 " '"

13oxx

Ix
_V

1..-

(i0)

A
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Equations (i0) and (6) can be progr.a_med on an analog computer and

the output signals representing _l, 7a, Ys, and k used to drive the

simulator. Some additional information is needed, however. Initial

conditions must be set on these output signals. Initial values of 71,

_e, 7s, and _ can be calculated as follows. Assume that any simulation

will be started from a condition of constant linear acceleration and

constant angular velocity, and that the linear acceleration will be

specified. Then

Ao = aiGo _G + aaGj G + asGj G = P(ho _c - g_C (11)
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A

4

7

: T°+ + iJc (12)

Where the subscript o denotes an initial condition; and g is the

acceleration due to gravity• According to the assumption then;

_io : 72o = 73o = _ = _'= 0

and

O(_o) 2 : JalGo 2 + a2Go 2 + asGo 2 _ g2

We must now find values of Yio; Yao; and 7So which satisfy equations_ (ii)

and (12). Because of the assumptions of steady state of A o and _o, we

have one redundancy among the three angles 71o; 7ao; and 7So. In other

words; we can arbitrarily choose an initial value for one of them; and
then solve for the other two. In the case of the Ames simulator the

angle most advantageously chosen arbitrarily is 72o , since 72 is
restricted to about ±50 ° displacement. To solve for 71o and 7So in terms

of 7a we can use equations (2). Setting p_ = 0 and av = -g, and writing

the dot products as their trigonometric equivalents; we have the three

equations:

alG o : -P(_o)aCOS 7ao sin 7So - g sin 72o

a2G ° : -P(_o)2(sin ylo sin 72o sin 7So + cos 71o cos 7So)

+ g sin 710 cos 720

JasO o : -D(_o)2( c°s Ylo sin Y2o sin YSo - sin Yio cos 7So)

+ g cos Ylo cos yao

(1B)

The first of these equations can be solved for ?So, since every other
variable in it is known. Then each of these two values can be used to

solve simultaneously the second and third equations for Ylo" Multiplying

the second of equations (13) by (-cos Ylo) and the third by (sin Ylo),

adding, and transposing yields:

a3G o sin 7_ o : p(_o)_COS 7s o + a_% cos 7_o (14)

Then, if equation (14) is squared and (i - cos271o ) substituted for

sinaYlo,

(a2Go a + asao 2) cosaTio + 2aaGoP(_o)aCOS 7So cos 71o

+ [p(_o)_]2cos27so - a3Oo 2 = 0
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Then

cos _i O =

-a2GoP(_o)2COS 73 o ± aaGoJaaGo a + aaGoa - [p(_o)a]acosaYso

aaGoa + aaGoa

(15)

For each of the values of 7ao obtained from the first of equations

(13), two values of 71o will be obtained from (15), only one of which,

the correct one, satisfies (14).

AXES OF THE S_TED VEHICLE

Throughout the development of the equations the simulator cockpit

axes were named [G, _G, _G instead of being given some x, y, z relation-

ship to axes of the vehicle to be simulated. This was done for the

following reason. Let _s _s and _s be unit vectors associated,

respectively, with the longitudinal axis, the lateral axis, and the

vertical axis of an axis system fixed in the simulated vehicle. The

axes of the simulated vehicle can be related to the axes of the simulator

cockpit in three ways:

Orientation Xl,

Orientation Xa,

Orientation Xa_

xS = Ta

zS = _a

x S = _G

zs = ya

xS = _a

_s = yG

zs = _G
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Of course_ the pilot and the interior of the simulator cockpit must be

oriented according to the S axes system. Depending on the problem to

be simulated_ that is_ the independent variable_ _ one orientation may be

more desirable than the others_ or there may be no difference among them.

For example, suppose for a particular problem it is necessary to faithfully

simulate ay, az_ pj and q. Then_ if X l were chosen a2G _ aaG, WiG, and
WaG would be the independent variables. This is Combination i0 of the

preceding section. The restrictions on the simulation then are:

72 _ + _/2

ax_O

zS. yc / 0

If Xa were chosen_ asG , aiG_ _aG_ and W3G would be independent. This

is Combination 9_ with restrictions

axe0

If X s were chosen_ azG_ aaG_ _aG and WzG would be independent, This
is Combination 5, with restrictions

ax_O

yc / o

Which of the three arrangements is best will depend on the particular

problem and on the physical limitations of the simulator.

CONCLUDINGREMARKS

The coordinate-transformation equations dew}loped in this report

apply in particular to the NASA-Ames five-degree-of-freedom piloted

flight simulator. However_ the method for developing the equations and

examining the singularities can be applied to other similar simulators

with differently ordered gimbals or a different mumber of degrees of
freedom or both.

For reasons explained in the text 3 the equations were developed

for four degrees of freedom instead of five. It appears possible_ within

the restrictions imposed by singularities in the equations_ to reproduce
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on the simulator any combination of four of the six componentsof
angular and linear motion of an actual vehicle. Kxsm_nation of the
coefficients in the equations indicates those positions of the gimbals
which correspond to singular points of the solutions; so3 in practice
the simulation can be set up to avoid those positions.

It appears also that the effects of the singularities maybe avoided3
in somecases_ by proper orientation of the pilot with respect to the
gimbals.

AmesResearch Center
National Aeronautics and SpaceAdministration

Moffett Field_ Calif. 3 0ct. 113 1961
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